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INTRODUCTION: The COVID-19 pandemic has
imposed massive public health burdens and
economic costs, with more than 220 million
confirmed cases and more than 4.5 million
deaths globally so far. In some countries, the
rapid deployment of safe and effective vaccines
has reduced cases, hospitalizations, and deaths.
However, many regions across the world have
little access to doses, and infections are re-
surging. Furthermore, sustained transmission
has led to the emergence of novel variants of
the causative severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) viruswith increased
transmissibility, andagainstwhich vaccinesmay
be less effective. Thus, understanding the effects
of vaccine nationalism and allocation on the
dynamics and control of SARS-CoV-2 is critical.

RATIONALE:We extend recentmodels of SARS-
CoV-2 dynamics to consider the number of

cases and potential for viral evolution in two
hypothetical regions, one with high access and
one with low access to vaccines. This modified
framework allows for variation in the strength
and duration of natural and vaccinal immu-
nity, which are aspects of the virus and host
response that remain uncertain, thus enabling
general explorations of a number of potential
scenarios. Tomodel the sharing of vaccines, we
begin by only coupling the two regions through
their vaccination rates. For different immuno-
epidemiological scenarios of SARS-CoV-2, we
examine the medium- and long-term dynam-
ics in both regions as a function of the fraction
of vaccines shared. Then, we couple the re-
gions through immigration and introduce po-
tential transmission increases due to evolution.
We use this coupled model to explore local and
combined infection numbers and clinical bur-
dens, as well as potential viral adaptation.

RESULTS: In general, we find that stockpiling
vaccines by countries with high availability
leads to large increases in infections in coun-
tries with low vaccine availability, the magni-
tude of which depends on the strength and
duration of natural and vaccinal immunity. A
number of additional subtleties arisewhen the
populations and transmission rates in each
country differ depending on evolutionary as-
sumptions and vaccine availability. Further-
more, the movement of infected individuals
between countries combined with the possibil-
ity of evolutionary increases in viral transmis-
sibility may greatly magnify local and combined
infection numbers, suggesting that countries
must invest in surveillance strategies to pre-
vent case importation. Dose sharing is likely a
high-return strategy because equitable alloca-
tion brings nonlinear benefits and also alle-
viates costs of surveillance (e.g., border testing,
genomic surveillance) in settings where doses
are sufficient to maintain cases at low num-
bers. Across a range of immunological scenar-
ios, we find that vaccine sharing is also a
powerful tool to decrease the potential for
antigenic and transmission evolution of the
virus, especially if infections after the waning
of natural immunity contribute most to evo-
lutionary potential.

CONCLUSION: Intuitively, our results indicate
that unequal vaccine allocation will result in
sustained transmission and increased case num-
bers in regions with low vaccine availability
and thus to a higher associated clinical burden
compared with a vaccinated population. Under
certain scenarios, sustained local transmission
could lead to an increased potential for anti-
genic evolution, whichmay result in the emer-
gence of variants with novel antigenicity
and/or transmissibility and affect epidemio-
logical characteristics globally. Overall, our
work underlines the importance of rapid, equi-
table vaccine deployment and the necessity to
export vaccines to regions with low availability
in parallel to their becoming available in re-
gions with high access. Coordinated vaccina-
tion campaigns across the world, combined
with improved surveillance and appropriate
nonpharmaceutical interventions to prevent
case importation, are imperative.▪
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High-access region (HAR) Low-access region (LAR)

Effects of vaccine allocation on the epidemiological and evolutionary trajectories of two regions. (A) Each
region is described by an immuno-epidemiological model, and the regions are potentially coupled through
immigration and transmission increases driven by viral evolution. (B) Current consensus on host immune responses
and clinical and transmission-blocking protection. (C) Epidemiological and evolutionary outcomes for different
vaccine allocation schemes given the specific assumptions related to natural and vaccinal immunity described in
(B). The terms “intermediate” and “good” immunity in (C) follow the descriptions provided in the main text.
Additional scenarios can be explored using the online interactive application (https://grenfelllab.shinyapps.io/
vaccine-nationalism/). Schematics of needles and viruses in (A) were created with BioRender.com.
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Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the
ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to
exert globally, yet vaccine distribution remains unequal among countries. To examine the potential
epidemiological and evolutionary impacts of “vaccine nationalism,” we extend previous models to include
simple scenarios of stockpiling between two regions. In general, when vaccines are widely available
and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of
subtleties arise when the populations and transmission rates in each region differ, depending on
evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes
most to evolutionary potential, sustained transmission in low-access regions results in an increased
potential for antigenic evolution, which may result in the emergence of novel variants that affect
epidemiological characteristics globally. Overall, our results stress the importance of rapid, equitable
vaccine distribution for global control of the pandemic.

T
he severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic
has led to more than 220 million infec-
tions and more than 4.5 million fatal-
ities to date (1). Effective vaccines [e.g.,

(2–4)] have now been approved and are ac-
tively being deployed, but numerous impor-
tant questions remain. Eventually, community
immunity may be attained through the de-
ployment of vaccines; however, if and when
this occurswill be contingent on the character-
istics of natural and vaccinal immunity (5–7).
As illustrated by the rapid spread and high
transmissibility of the Delta variant (8), the
evolutionary potential of SARS-CoV-2 is amajor
potential obstacle for control (9).

Owing to strong public and political pres-
sures and fear of waning immunity, some
countries with high vaccine availability are
currently resorting to “vaccine nationalism”—
stockpiling vaccines to prioritize rapid access
to their citizenry (10). Indeed, at the time of
writing, 113 and 137 doses per 100 individuals
have been administered in the United States
andUnited Kingdom, respectively, whereas an
average of 51 and 8.5 doses per 100 individuals
have been administered in India and across
Africa, respectively (11). Recently, the World
Health Organization recognized that delayed
access to vaccines in countries with low vac-
cine availability may lead to more evolutionary
potential (12), which could result in immune
escape or other phenotypic changes of interest
(e.g., increases in transmission). The emer-
gence of future variants capable of evading
natural or vaccinal immune responses could
threaten containment efforts globally. These
concepts underlie the development of a num-
ber of policy tools, including the existing
COVID-19 Vaccines Global Access (COVAX)
initiative. Furthermore, to ensure that vaccine
distribution is ethically sound and equitable,
the “fair priority model” has been proposed
(13–15) as a potential replacement to the cur-
rently planned proportional allocation (by pop-
ulation size) from COVAX.
Prior work has explored optimal prophylac-

tic vaccine allocation for minimizing the final
epidemic size of a fully immunizing infec-
tion [i.e., one that can be modeled using a
susceptible-infected-recovered (SIR) framework]
(16); when interaction between communities (or
countries) is considered, equal vaccine distri-

bution is increasingly advantageous in terms
of minimizing case numbers (16). Modeling
studies have also shown that coordinated in-
fluenza vaccine sharing would reduce the fi-
nancial and infection burden of influenza
outbreaks globally (17). Similar problems re-
lated to optimizing vaccine allocation have also
been explored in networks with community
structure (18), as well as in the face of econo-
mic constraints (19) and vaccination coalition
formation (20), and for SARS-CoV-2 with age
(and contact) heterogeneity (21, 22).
We have recently shown that the strength

and duration of immunity elicited after infec-
tion or receipt of one or two doses of a vaccine
will have a crucial impact on the medium-
term epidemiological and potential evolution-
ary outcomes (5, 6). In this study, we extend
these analyses to address potential epidemi-
ological and evolutionary consequences of poli-
cies of vaccine nationalism or equitable access
for a range of assumptions regarding the ro-
bustness of host immune responses. In reality,
vaccine distribution is a public goods problem
(23), and the optimal “global” allocation proj-
ected based on evolutionary and immunolog-
ical uncertainties may differ from national
optima because of the actual economic land-
scape of each country. In all cases, every nation,
however, has a shared interest in reducing
the potential for novel strains to arise, which
is achievable by minimizing the global infec-
tion burden.
We consider a transnational extension of our

model, comprising two countrieswith possibly
different population sizes and seasonal trans-
mission patterns. One country, the high-access
region (HAR), chooses to allocate a fraction f of
the total vaccine supply to the low-access region
(LAR). The underlying immuno-epidemiological
models for both countries account for both
the duration of natural and vaccinal immunity
and the residual decrease in host susceptibility
to infection (relative to immunologically naïve
individuals) after full natural or vaccinal immu-
nity has waned; these models are described in
detail in (5, 6), where the more detailed struc-
ture (6) accounts for immunity after receipt of
one or two vaccine doses. In the first “de-
coupled” framework (top panel of Fig. 1), we
assume that the epidemiological dynamics of
both countries are entirely independent, with
the exception of their respective vaccination
rates; we also compute ameasure for the glob-
al potential for viral evolution of immune es-
cape (6). In the second “coupled” framework
(bottom panel of Fig. 1), we allow for immi-
gration of infected individuals between the
countries at rate h (19). Additionally, we ap-
proximate the stochastic occurrence of po-
tential transmission increases (PTIs) in each
country: Briefly, if the “potential net viral
adaptation rate” [see supplementary mate-
rials, fig. S3, and (6)] exceeds a threshold, then
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there is a nonzero probability that the trans-
mission rate in both countries increases. This
follows evidence of enhanced binding of the
SARS-CoV-2 spike protein receptor binding
domain with the angiotensin-converting en-
zyme 2 (ACE2) receptor in more contagious
SARS-CoV-2 variants, as well as potentially
higher viral loads (24). Mutational changes
to the spike protein furin cleavage site (e.g.,
at site 681) may also contribute to increased
viral transmissibility (25). In this way, this
assumption represents a pessimistic scenario
where the evolution of pathogen immune es-
cape is inevitably accompanied by increases
in transmission, although we also compare our
resultswith themore optimistic scenariowhere
transmission increases do not occur. (Note that
we are notmodeling the complexities of variant
dynamics and evolution explicitly.) In reality,
transmission increases may plateau (26), and
viral evolution may have more subtle effects on
disease transmission, includingmodulating the
susceptibility of partially immune hosts. The
full mathematical details for both frameworks
are described in the supplementary materials.
We begin with the decoupled framework

and the simpler underlying “one-dose” vac-
cination model from (5) to compute the long-

term equilibrium fraction of infections in both
countries under a range of epidemiological and
immunological scenarios. Then, with specific
dosing regimes (6), we examine the short- and
medium-term epidemiological dynamics and
the global potential for evolution with the
sharing of vaccines. Next, using the coupled
framework, we compute national and com-
bined case numbers in themedium term given
different degrees of vaccine allocation from the
HAR to theLAR for different immigration rates
and average relative reproduction numbers.
We do so for total as well as severe cases, with
the expectation that the number of severe cases
may be indicative of infections requiring hos-
pitalization or the clinical burden of COVID-
19, whereas the number of total cases reflects
all infections regardless of severity. Finally, we
compare the results of the coupled and de-
coupled frameworks for specific scenarios.

Decoupled framework
Equilibrium analyses

To obtain analytical intuition for the effect of
vaccine nationalism, we first examine the sim-
plest model of vaccine sharing, where both
regions are only coupled through their vacci-
nation rates. The dynamics of prophylactic vac-

cine distribution strategies are well understood
when infections lead to recovery and lifelong
immune protection (SIR) (16). However, natu-
ral and vaccinal immunity to SARS-CoV-2 is
likely not lifelong, yet complete resusceptibil-
ity after the waning of immunity, as is assumed
in susceptible-infected-recovered-susceptible
(SIRS) frameworks, is also unlikely. Instead,
we examine the role of both the strength and
duration of immune responses withmore gen-
eral SIR(S) models (5, 6). We first ignore the
complexities of dosing regimes and extend
the model in (5) to consider vaccine sharing in
the decoupled framework (top panel of Fig. 1),
assuming that a single immune category exists
for vaccinated individuals and that vaccinal
immunity may wane at a rate distinct from
natural immunity. Because we assume that
the infection dynamics in both countries are
only coupled through their respective vaccina-
tion rates, a unique equilibrium of total in-
fections exists [either disease-free or endemic;
see supplementary materials and (5) for de-
tails]. To examine the long-term epidemiolog-
ical effects of vaccine nationalism, we compute
the total fraction of infections at equilibrium
as the proportion of vaccines shared between
countries is varied. In other words, for a fixed
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Fig. 1. Schematic depicting the two-country model. The underlying immuno-epidemiological models for each country are based on (5, 6). Vaccines are allocated by the HAR
to the LAR. In the coupled framework, immigration of infected individuals between the countries is considered, and the national transmission rate depends on PTIs in both
countries, shown schematically as solid and striped virus particles in the HAR and LAR, respectively. In the decoupled framework, no immigration occurs, and the transmission
rate is not influenced by PTIs. Full model details are provided in the supplementary materials.
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global vaccination ratentot (determined by the
maximal rate of administration of the first
dose n0;tot and the interdose period; see Mate-
rials and methods) and for a fraction f of
vaccines allocated from the HAR to the LAR,
the vaccination rates in the HAR and LAR are
1� fð Þntot and f ntot, respectively. We examine
four immunity scenarios that range from poor
to robust natural and vaccinal immune re-
sponses (Fig. 2).
When the characteristics of both countries

are the same, sharing vaccines always decreases
or maintains the total fraction of infections
at the long-term equilibrium [see Keeling and
Stattock (16) for the SIR extreme with a focus
on two differently sized populations]. The in-
tuition for this result is apparent from exam-
ining the underlying values for each country
(Fig. 2C). The total fraction of infections is

minimized whenever one of the countries does
not vaccinate beyond the rate needed for herd
immunity. Additionally, sharing does not have
an appreciable impact on the total fraction
of infections at equilibrium when vaccination
rates are too low (Fig. 2A, top row) or overall
transmission rates are higher and host im-
mune responses are poorer (Fig. 2B, top row).
Because of nonpharmaceutical interventions
(NPIs) or intrinsic factors [e.g., demographics
(27), population density (28), or vulnerabilities
(29)], transmission rates in the two countries
may be asymmetric. If there is less disease
transmission in the HAR (modeled as a re-
duction in the transmission rate), then the
“optimal” fraction of vaccines shared to mini-
mize the combined equilibrium fraction of
infections crucially depends on themagnitude
of the vaccination rate. If vaccine supplies are

low and immune responses poor, then sharing
only a very small fraction of the vaccine supply
is epidemiologically beneficial in terms of de-
creasing the overall burden. For stronger im-
mune responses, augmenting vaccine sharing
rates becomes increasingly beneficial from an
epidemiological perspective, because the pro-
tective effects of the vaccine are maintained
for longer within the population (compare the
columns of the middle row of Fig. 2A). Sim-
ilarly, as vaccine supplies increase (compare
the colored curves in the middle row of Fig.
2A), the minimum value of infections occurs
for increasingly large values of f, or fractions
of vaccines shared. Eventually, when global
vaccination rates are high, even for poor host
immune responses, this minimum is attained
when more than half of the vaccine supply is
allocated to the LAR (first panel of the middle
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Fig. 2. Long-term equilibrium of the average fraction of infections. (A to
E) Equilibrium infections as a function of the vaccine fraction allocated by the HAR
to the LAR under different scenarios related to immunity, transmission, and
vaccination rate. In all panels, immunity scenarios are as follows: poor immunity,
1
d ¼ 1

dvax
¼ 0:8 years, D ¼ 0:8; intermediate immunity, 1d ¼ 1

dvax
¼ 1 year, D ¼ 0:7; good

immunity, 1
d ¼ 1

dvax
¼ 1:5 years, D ¼ 0:6; and robust immunity, 1

d ¼ 1
dvax

¼ 2 years,

D ¼ 0:5, where 1
d is the average duration of natural immunity, 1

dvax
is the average

duration of vaccinal immunity, and epsilon is the relative susceptibility to infection
after the waning of natural or vaccinal immunity. In the scenario with asymmetrical

transmission rates between the two countries, the transmission rate in the country with
lower transmission is taken to be 80% of the value in the symmetric case. In the
scenarios with overall higher transmission rates (B), this same asymmetric assumption
is made in addition to the baseline symmetric transmission rate being increased by 30%
relative to the value in (A). In (C) to (E), illustrations of the equilibrium fraction of
infections in each country with the poor immunity scenario are shown for (C) symmetric
transmission with ntot ¼ 0:004, (D) asymmetric transmission (lower in HAR) with

ntot ¼ 0:004, and (E) asymmetric transmission (lower in HAR) with ntot ¼ 0:001, with all
other parameters as in (A). In all panels, the baseline transmission rate is b ¼ 2:3

5 .
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row of Fig. 2A). By symmetry, the opposite
occurs if there is less transmission in the LAR.
These trends are further magnified if overall
transmission rates are increased (Fig. 2B). To
further emphasize these effects, we present the
long-term equilibrium of each country under
representative scenarios in Fig. 2, C to E. In
particular, a comparison of Fig. 2D and Fig. 2E
illustrates the importance, and indirect bene-
fit, of increasing vaccine supply. The relative
sizes of the HAR and LAR populations can
have important consequences for the frac-
tion of vaccine allocation that minimizes the
weighted fraction of infections (figs. S1 and
S2). Overall, these results highlight the impor-
tance of continued NPIs that decrease trans-
mission, such as rapid testing and physical
distancing, in conjunction with ramping up
vaccination and sharing vaccine supplies equi-
tably to decrease overall burden.

Medium-term dynamics
Epidemiological considerations

To consider the near- and medium-term dy-
namic epidemiological effects of vaccine shar-
ing, in Fig. 3 we explore the landscapes of
immunity and infections across multiple sce-
narios for otherwise-symmetric countries (i.e.,
population size and seasonal transmission
rates). In all scenarios, vaccine supply is as-
sumed to be limited initially in theHAR [mod-
eled as a one-dose policy, a lowermaximal rate
of administration of the first dose n0;tot, and
no sharing (f = 0)] and then is assumed to
increase. In conjunction with an increase in
n0;tot, we allow for a transition to the recom-
mended two-dose strategy (1w ¼ 4 weeks, third
and fourth columns of Fig. 3, where 1

w is the
average time between the first and second
vaccine doses) and/or the initiation of equal
sharing (f = 0.5) with the LAR (which is as-
sumed to distribute vaccines using the same
strategy as the HAR) (second and fourth col-
umns of Fig. 3).
Intuitively, if one-dose immunity is robust

(bottom panel of Fig. 3), then transitioning to
a two-dose strategy leads to fewer individuals
with robust vaccinal immunity, in turn giving
rise to increases in infections in the short and
medium term [compare the corresponding sce-
narios of the bottom panel of Fig. 3 and see
also (6)]. In such a situation, “one-dose” strat-
egies (i.e., either the first dose of a two-dose
vaccine or the single dose of a one-dose vac-
cine) with equal sharing between countries
suppress overall burden. Conversely, if one-
dose immunity is poor, switching to the rec-
ommended two-dose regimen prevents the
accumulation of individuals with waned one-
dose immunity and thus potentially larger in-
fection peaks in the longer term (top panel of
Fig. 3). If poor one-dose immunity neverthe-
less reduces severity of infection after waning
(unlike our pessimistic assumption), then the

predicted clinical burden of severe cases would
likely be lower. Finally, if one-dose immunity
is poor and a one-dose policy is pursued, the
first infection peak after ramping up vacci-
nation in the HAR may be higher without
sharing (top-left plot in the top panel of Fig. 3).
This counter-intuitive finding arises because
of the large accumulation of individuals with
waned one-dose immunity who experience
infection. This highlights the important role
for population-level susceptibility (modulated
by natural and vaccinal immune responses)
and its dynamical interplay with transmis-
sion in determining the timing and burden of
infections. The effects of different NPI sce-
narios, transmission patterns, and vaccination
rates in either the HAR or LAR can be further
explored with the online application (30).

Evolutionary considerations

The accumulation of individuals with various
states of immunity (i.e., waned one-dose im-
munity or immunity after natural infection)
may also lead to different evolutionary out-
comes depending on the vaccine-sharing scheme
pursued. Current evidence suggests that ad-
aptive immune responses after natural infec-
tion with SARS-CoV-2 are fairly robust and
long-lasting (31, 32). This protection may be
less certain in the context of subsequent
infection with variant strains (33, 34). Encour-
agingly, studies indicate that previously in-
fected hosts are also largely protected (clinically
and against breakthrough infections) against
emerging variants after a single vaccine dose
(35). However, recent work indicates poorer
protection against the rapidly spreading Delta
variant of concern, particularly after a single
dose (36), although protection against severe
disease still appears fairly robust (37–39). In-
terestingly, the protection conferred by a single
vaccine dose in previously infected individuals
may be even greater than that provided by two
vaccine doses in naïve hosts (40). However,
there are still many immunological uncertain-
ties, for example, the duration and longer-term
strength of this protection against existing
strains and potential emerging variants re-
main unknown.
In fig. S3, we use the evolutionary frame-

work from (6) to project the potential net viral
adaptation rate [see supplementary materials
for details and the interactive online applica-
tion (30) for additional scenarios]. Overall, we
find that uncertainties in evolutionary outcomes
dominate our projections, echoing previous
findings (6) [fig. S3 and the interactive online
application (30)]. However, if the evolutionary
potential for immune escape is highest among
infections in hosts with natural immunity, the
frameworkpredicts that sharing vaccines always
decreases global evolutionary potential (green
curves of fig. S3) in the decoupled framework.
Overall, when immunity after a single vaccine

dose is robust, natural and vaccine-derived im-
munitywill limit damaging pathogen evolution
relative to the scenario with poor single-dose
immunity (compare the top and bottompanels
of fig. S3). However, if immunity is partial or
waning, ongoing transmission might accel-
erate adaptation, supporting the need for
continued monitoring of variants and their
interaction with natural and vaccine-derived
immunity.
Another intuitive result is that, in the LAR,

sharing vaccines leads to increases in popu-
lation immunity (for any dosing regime) and
thus a decrease in infections and burden in
the short term, even with poor one-dose im-
munity. In general, in the HAR, sharing de-
creases population immunity and increases
infections in the short term. However, these
changes are minimal and likely acceptable
given the combined decrease in infections,
illustrating the long-term benefits of vaccine
sharing. In particular, although local cases in
the HAR may increase in the short term, the
longer-term disease risk would be lowered
by sharing because of a decrease in the po-
tential for the evolution of more transmissi-
ble or immune-escape viral variants.

Coupled framework

So far, we have assumed that the countries
have decoupled disease dynamics. This sim-
plification for tractability ignores infection
importation as well as the possible emergence
of variants from regions with more persistent
infections. The issues that arise from the glo-
bal circulation of SARS-CoV-2, particularly the
variants of concern, are of considerable public
health importance. Thus, we next explore these
effects using the coupled framework presented
in the bottom panel of Fig. 1.

Cumulative cases and pathogen evolution in the
medium term

In Fig. 4, we plot the cumulative number of
total and severe cases (see supplementarymate-
rials for details), assuming equal population
sizes in both countries from the time of
vaccine introduction until 5 years after the
pandemic onset in the HAR, LAR, and com-
bined, as well as the projected number of PTIs
to have occurred in both regions by the end of
the 5-year period.We do so for various vaccine
allocation fractions between theHARandLAR,
as well as for a range of immigration rates,
assuming symmetric transmission rates (Fig.
4, A and C), and relative mean reproduction
numbers, assuming constant immigration rates
(Fig. 4, B and D; see Materials and methods).
In Fig. 4, A and B, we assume that infection
after waned natural immunity contributes
themost to viral adaptation, whereas in Fig. 4,
C andD, we assume that infection after waned
vaccinal immunity, and one-dose immunity in
particular, contributes the most.
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Dependence on immigration rate
For equal population sizes and symmetric
transmission rates, a weak dependence of

total and severe cases as well as PTIs on the
immigration rate h is observed, regardless of
whether infection after waned natural or vac-

cinal immunity is assumed to contribute more
to viral evolution (Fig. 4, A and C). Additionally,
more equitable vaccine distribution minimizes
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Switch to two−dose strategy

Robust vaccinal immunity after one dose

Fig. 3. Immune landscapes and infections in both countries under a range of
vaccination strategies and assumptions related to the robustness of immune
responses. Note that the color scheme is as in Fig. 1. In all panels, vaccination begins

after week 48. Poor vaccinal immunity after one dose is represented by 1
r1
¼ 0:25 year

and D1 ¼ 0:9, where 1
ri
and is the average duration of vaccinal immunity following

dose i, whereas robust vaccinal immunity after one dose means 1
r1
¼ 1 year and

D1 ¼ 0:7. Other immunity parameter values are as follows: 1d ¼ 1 year, 1
r2
¼ 1 year,

D ¼ D2 ¼ 0:7, DV1 ¼ 0:1, and DV2 ¼ 0:05. All other parameters, including the

procedure for the calculation of severe cases, are described in the supplementary
materials. In both the top and bottom panels, the top row depicts a switch from
a maximum first-dose administration rate of 1 to 3% after week 60, whereas it is 1 to
5% for the bottom row (and concurrent with sharing, if it occurs).
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Fig. 4. Cumulative number of cases and PTIs in the medium term. (A to
D) Heat maps depicting total and severe cases from the time of vaccine onset
(tvax ¼ 48 weeks) through the end of the 5-year period for both countries (first
and second columns from the left), the HAR (third and fourth columns from
the left), and the LAR (fifth and sixth columns from the left), as well as the
combined number of PTIs to have occurred in both countries at the end of
5 years (last column). Each grid point denotes the mean value of 100 simulations.
The population of both countries is taken to be the same. Each area plot is internally
normalized, such that the largest value in each plot is 1. The x axis indicates the
fraction of vaccines retained by the HAR (i.e., 1 − f); thus, the far right of a plot is the

scenario where the HAR retains all vaccines (f = 0). In (A) and (C), both countries
have the same average transmission rate (�R0, see Materials and methods), and
the immigration rate h is varied. In (B) and (D), the immigration rate is fixed at

h = 0.01, and the relative mean transmission rate in the LAR, that is, �R0;LAR=�R0;HAR,
is varied between 0.5 and 2. The seasonality of the transmission rates in both
countries and periods of NPI adoption are identical and as described in the Materials
and methods. In all simulations, we assume a two-dose strategy throughout, that
is, 1

w ¼ 4 weeks, and take the maximal rate of administration of the first dose to be
n0;tot ¼ 2%. Assumed immunological parameters are 1

d ¼ 1 year, D ¼ 0:7, DV1 ¼ 0:1,
DV2 ¼ 0:05, D2 ¼ 0:7, and 1

r2
¼ 1 year, and the one- to two-dose immune
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total PTIs and combined cases in both scenar-
ios. When natural infections contribute more
to evolution (Fig. 4A) and h is low, the HAR
must retain an increasing share of the vac-
cines to minimize local total cases as the im-
migration rate increases, but this is done at
the expense of more cases in the LAR and
PTIs. Notably, for f ≈ 0, severe cases are mini-
mized regardless of the immigration rate in
the HAR and maximized in the LAR, which
may have important clinical consequences.
When infection after waned vaccinal immu-
nity contributes more to viral evolution, this
approach is no longer advantageous for the
HAR, and the retained vaccine fraction sets
the observed case numbers nearly indepen-
dently of the assumed immigration rate. Fur-
ther, large asymmetries in vaccine sharing (i.e.,
f = 0 or 1) result inmuchmoremarked relative
numbers of PTIs in this scenario.
For the same total vaccine availability, the

most realistic population asymmetry is that
the LAR has a larger population. Under this
condition (fig. S4) and when infection after
waned natural immunity contributes more to
evolution, total cases in the LAR are relatively
insensitive to the amount of vaccine allocated,
except for very large f; however, severe cases
can be substantially reduced with vaccine
sharing. Here, combined total cases and PTIs
are minimized by minimizing cases in the
HAR. When a greater number of total vac-
cines are available (i.e., a larger n0;tot ; fig. S5),
total and severe cases in the more populous
LAR decrease approximately monotonically
with increasing vaccine allocation f, and more
equitable vaccine allocation once again mini-
mizes combined total and severe cases. When
infection after waned vaccinal immunity con-
tributes more to evolution, the trends are more
similar to those for symmetric population sizes,
and more equitable vaccine sharing is favored
for both vaccination rates n0;tot , given a larger
population in the LAR (figs. S4 and S5).
When the LARhas a smaller population (fig.

S6), a relatively weak dependence of total and
severe case numbers and PTIs on h is still ob-
served for both evolutionary scenarios, partic-
ularly for higher immigration rates. However,
and particularly when infection after waned
natural immunity contributes more to evolu-
tion, the minima in combined cases and PTIs
are now observed for f < 0.5, that is, when the
HAR retains more than half of the available
vaccines. Importantly, we note that additional
booster doses may further change these land-
scapes of immunity and, consequently, the
projected burdens of total and severe cases.

Dependence on the relative transmission rate
The number of total and severe cases and
PTIs show a greater sensitivity to the average
reproduction number ratio �R0;LAR=�R0;HAR be-
tween the two countries for a fixed immigra-
tion rate. Intuitively, for equal population sizes
(Fig. 4) and when �R0 in the LAR country is
lower, having the HAR retain more than half
of the vaccines (f < 0.5) is a good strategy for
minimizing total PTIs and cases, regardless of
the evolutionary scenario. Indeed, along with
an increase in cases, the optimal vaccine allo-
cation shifts closer and closer to equal sharing
as the �R0 values of both countries approach
each other. These trends are similar when the
LAR has a larger or smaller population than
the HAR (figs. S4 and S6, respectively).
When �R0 in the LAR is higher, trends are

more complex. In general, regardless of the
relative population size or evolutionary sce-
nario, for a given �R0;LAR=�R0;HAR, cases in the
HAR decrease with increasing vaccine reten-
tion (smaller f), whereas cases in the LAR
increase (Fig. 4 and figs. S4 to S6). Severe
cases in each region in particular are strongly
reduced by increased vaccine availability. The
increase in cases in the LAR is increasingly
large at higher �R0;LAR=�R0;HAR. When infection
afterwanednatural immunity contributesmore
to evolution and vaccine supply is sufficiently
high to reduce case numbers in the LAR, PTIs
are numerous when the HAR retains a large
fraction of the vaccines (Fig. 4B and figs. S5B
and S6B). This is due to sustained increased
case numbers in unvaccinated individuals in
the LAR. Conversely, when infection after
waned vaccinal immunity contributes more to
evolution, then having the HAR (with lower
transmission rates) retain a larger fraction of
the vaccines minimizes PTIs for any relative
population size, because the high �R0 in the LAR
would result in large subsequent peaks con-
taining individuals whose vaccinal immunity
has wanedwith sharing (Fig. 4D and figs. S4D,
S5D, and S6D). However, this strategy also
leads to highly increased case numbers, in-
cluding severe cases, in the LAR. Because LARs
may also havemore fragile health care systems,
the increased clinical burden under this sce-
nario may be particularly problematic.

Comparison of coupled and
decoupled frameworks

We note that assumptions of large �R0 in the
LAR also result in very large initial infection
peaks, which increase community immunity
in the medium term. These initial waves are
not reflected in the total case counts, however,

because these values are summations from the
time of vaccine initiation through the end of
the 5-year period after the onset of the pan-
demic. Further, in Fig. 5 we illustrate the
temporal effect of the coupled framework on
the infection dynamics in the LAR and HAR
relative to the firstmodel with no immigration
or explicit effect of PTIs on the transmission
rate. When moderate asymmetry in �R0 is as-
sumed (�R0;LAR=�R0;HAR ¼ 1:2), simulations using
the decoupled framework suggest that a strat-
egy where the HAR retains all vaccines would
be highly beneficial for that country (Fig. 5, A
to F; no PTIs are projected to occur, and low
case numbers are observed throughout). How-
ever, this occurs at the expense of PTIs and
infection burden in the LAR, which are both
substantially higher. With the more realistic
coupled framework, immigration and increases
in transmission illustrate that this strategy is
far less beneficial to the HAR than the de-
coupled framework would suggest, because
substantially higher case numbers and path-
ogen evolution are predicted in this region.
Although total cases in the HAR increase
slightly when vaccines are equally distributed
under the coupled framework (Fig. 5, G to L),
substantial reductions in case numbers in the
LAR result in fewer PTIs in that country, and
total combined case numbers are also slightly
lower. To untangle the effects of immigration
and PTIs on dynamics in the coupled frame-
work, we reproduce Figs. 4 and 5 allowing for
immigration only in figs. S7 and S8, respec-
tively. In other words, these figures represent a
more optimistic evolutionary scenario in which
the occurrence of a PTI does not increase trans-
mission rates in either theHARor LAR.Overall,
we show that vaccines play an important role in
minimizing cases (particularly severe cases) as
well as potential viral adaptation in both re-
gions. We also emphasize that imperfect vac-
cinal and natural immunity and asymmetries
in population size and transmission rates add
many nuances to this picture.

Caveats

A full list of caveats and future directions is
presented in the supplementary materials;
we briefly summarize them here. First, build-
ing on prior work and to focus on qualitative
features, we ignore heterogeneities within
countries, such as those due to age (41) or super-
spreading (42). We have also assumed simple
scenarios for NPIs as in (6) and assumed that
the seasonal transmission rates are similar in
both countries.More granular, well-parameterized
epidemiological models with these complexities
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response ratio is xe ¼ 0:8 (see Materials and methods). In (A) and (B), we
assume that infection after waned natural immunity contributes more to
potential viral adaptation and takewIS ¼ 0:8,wIS1 ¼ 0:2=xe, andwIS2 ¼ 0:2, where
wi is the relative weight for evolutionary potential for each infection type i (see Materials

and methods). In (C) and (D), we assume that infection after waned vaccinal immunity
contributes more to potential viral adaptation and take wIS ¼ 0:4, wIS1 ¼ 0:8, and
wIS2 ¼ 0:8� xe (see Materials and methods). Additional details related to the
determination of severe cases are also provided in the supplementary materials.
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Fig. 5. Time series of cases and potential net viral adaptation rates. (A to
L) Infections in the HAR (blue) and LAR (red) for the first 5 years after pandemic
onset for the coupled [(A) and (G)] and decoupled [(C) and (I)] frameworks.
Each simulation is run 100 times, with the average indicated by the solid line and
the standard deviation shown with the corresponding ribbon. The average
number of cumulative cases over all simulations from the time of vaccine onset
tvax ¼ 48 weeks through the end of the 5-year period are shown in (E) for the
HAR, LAR, and both countries combined (gray) for the coupled (solid) and
decoupled (dashed) frameworks. Time series of the potential viral adaptation
rate in both regions for the coupled [(B) and (H)] and decoupled [(D) and (J)]

frameworks. The colors, averages, and standard deviations are as described
above. The dashed horizontal line denotes ecutoff ¼ 0:01, the assumed threshold
for the occurrence of a PTI (see Materials and methods). The average number
of PTIs at the end of the 5-year period are shown in (F) and (L) for the HAR and
LAR for the coupled (solid) and decoupled (dashed) frameworks. (A) to (F)
correspond to the HAR retaining all vaccines (f = 0), whereas (G) to (L)
correspond to equal vaccine sharing (f = 0.5). In all simulations, we take
�R0;LAR=�R0;HAR ¼ 1:2 and h = 0.01 and assume that infection after waned natural
immunity contributes primarily to evolution (i.e., wIS ¼ 0:8, wIS1 ¼ 0:2=xe, and
wIS2 ¼ 0:2). All other parameters are identical to those in Fig. 4.
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would lead to more accurate quantitative pre-
dictions. Additionally, underlying differences
in susceptibility between the HAR and LAR,
through factors such as variations in age struc-
ture or degrees of preexisting population-level
immunity, may result in differential rates of se-
vere cases and hospitalizations independent of
vaccination. An explicit treatment of age struc-
ture and serostatus [as in (21)] inmodeling vac-
cine rollout to estimate clinical burdens inHARs
and LARs under different sharing schemes
should be investigated further. We also note
that ourmodels focused on the situationwhere
dose administration is contingent on supply, so
that “sharing” vaccines from the HAR to the
LAR decreases the vaccination rate in theHAR.
However, certain HARs may have access to
more doses than they can administer. In such a
scenario, sharing would be even more benefi-
cial: It would lead to no change in the HAR vac-
cination rate while increasing that of the LAR.
Moving forward, additional booster dosesmay

be administered that could alter population-
level immune landscapes, and including these
in future models will be important for quali-
tative andquantitative predictions. Additionally,
we omit vaccine hesitancy (23), though simple
extensions of our previous models with hesi-
tancy (5, 6) could examine the resulting inter-
play with vaccine nationalism. Furthermore,
our equilibrium analyses highlight the long-
term importance of vaccine sharing regardless
of when sharing is initiated. However, our sce-
narios that examine short- andmedium-term
implications strongly emphasize the benefits
of close to “parallel” or concurrent vaccine
sharing. The effects of delaying the initiation
of sharing, for instance, until a certain pro-
portion of individuals in the HAR are vacci-
nated, should be carefully examined.
Lastly, we have assumed the simplest evo-

lutionary models, both for determining po-
tential viral adaptation rates as well as for
simulating potential increases in transmis-
sion rates. As more data become available,
these should be refined (43–46), with possible
directions including extending the model to
explicitly track the transmission of different
strains, and accounting for potential reduc-
tions in the strength of vaccinal immunity
(i.e., the parametersDV1,DV2,D1, andD2, whereDVi

is the relative susceptibility to infectionwhile in
the i-dose vaccinated class and Di is the relative
susceptibility to infection after the waning of
i-dose immunity) due to the emergence of novel
immune-escape variants (47). In particular, pro-
longed infections in immunosuppressed hosts
may be disproportionately important for evolu-
tion (48). The online interactive application (30)
allows for an in-depth exploration of the effect
of different climate-driven seasonal transmission
rates as well as a broad range of assumptions
related to NPIs and immuno-epidemiological
parameters.

Conclusion
Even as vaccine production increases, a num-
ber of countries are choosing to share little or
no vaccines with countries that have very low
vaccine availability. Vaccine nationalism, dos-
ing regimes, and host immune responses have
important interactive effects, and these will
substantially shape epidemiological dynamics
and evolutionary potential in the medium
term. Additionally, unstable vaccine supply
will also increase variability in the timing or
availability of first and second doses.
Using extensions of our prior work (5, 6),

we incorporated vaccine sharing scenarios in
two countries whose infection dynamics are
either otherwise independent or coupled
through immigration of infectious individ-
uals and evolution-driven increases in trans-
mission rates. When country profiles are
symmetric, we find that sharing vaccines
with countries that have low availability
decreases overall infections and may also
mitigate potential antigenic evolution. Asym-
metries in population size or transmission
rates introduce additional complexities, which
are particularly marked when natural and
vaccinal immunity is weak. Nevertheless, our
models indicate that the prompt redistri-
bution of vaccine surpluses is likely advan-
tageous in terms of epidemiological and
evolutionary outcomes in both countries and,
by extension, globally. Ethical arguments also
support this policy (13, 14). Persistent increased
disease transmission in countries with low
vaccine availability also substantially under-
mines attempts at infection control through
stockpiling in the country with high vaccine
availability, which is not accounted for when
disease transmission in both countries is as-
sumed to be decoupled. Overall, our work
highlights the importance of continued efforts
in quantifying the robustness of immunity
after vaccination. Furthermore, reevaluation
of stockpiling policies as vaccine supplies in-
crease is imperative, and ramping up global
vaccination efforts is crucial.

Materials and methods
Determination of seasonal
reproduction numbers

To reflect observed seasonal variation in trans-
mission rates for respiratory infections arising
from related coronaviruses (49), influenza (49),
and respiratory syncytial virus (50), we base
seasonal reproduction numbers in this work
on those in (5), which were calculated in (49)
based on the climate of New York City. Other
seasonal patterns can be explored using the
interactive online application (30). In all simula-
tions, we modify these values to force a mean
value for the basic reproduction number of
�R0 ¼ hR0 tð Þi ¼ 2:3,where tdenotes eachweek
in a year, by multiplying the climate-derived
time series R0;c tð Þby 2.3 and dividing by its

average value, that is

R0 tð Þ ¼ R0;c tð Þ 2:3�R0;c

When transmission rates are assumed to be
asymmetrical, the mean value of the R0 tð Þ
time series is adjusted by the desired relative
ratio. For example, for �R0;LAR=�R0;HAR ¼ 1:2,
the reproduction number time series in the
HAR is as above, but in the LAR it is

R0;LAR tð Þ ¼ R0;c tð Þ 2:3�R0;c

�R0;LAR

�R0;HAR

¼ R0;c tð Þ 2:3�R0;c
� 1:2

Modeling of NPIs
In all simulations, we enforce periods of NPI
adoption (arising from behaviors and policies
such as lockdowns, mask wearing, and social
distancing) in which the transmission rate is
reduced from its seasonal value described in
the previous section.
For the simulations of medium-term dynam-

ics using the decoupled framework (i.e., Fig. 3
and fig. S3), we used the same NPI scenarios
as in (6). For all simulations using the coupled
framework (i.e., Figs. 4 and 5 and figs. S4 to
S8), we assume thatNPIs are adopted between
weeks 8 and 44 after the pandemic onset, re-
sulting in the transmission rate being reduced
to 40% of its seasonal value. Betweenweeks 45
and 79, we assume that the transmission rate
is 60% of its seasonal value—higher than
during the previous period owing to either
behavioral changes after the introduction of
the vaccine or the emergence of more trans-
missible strains. Finally, we assume that NPIs
are completely relaxed beyond week 80.

Simple vaccination model

The complete mathematical details relevant
to the following components of the simple vac-
cination model are presented in the supple-
mentary materials:
Model equations
Equilibrium calculations

Model with explicit dosing regimes

The complete mathematical details relevant
to the following components of the model with
explicit dosing regimes are presented in the
supplementary materials:
Model equations
Calculation of cumulative case numbers
Linking vaccination rate to interdose period
Determination of potential net viral adap-

tation rate
Specification of one-dose vaccine efficacy

from one- to two-dose immune response ratio
Calculation of the number of severe cases
Details for coupling between the countries
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Stockpiling and control
A triumph that has emerged from the catastrophe of the severe acute respiratory syndrome coronavirus 2 pandemic
has been the rapid development of several potent vaccines. However, 18 months into the pandemic and more
than 6 months after vaccine approval, wealthy countries remain the major beneficiaries. Wagner et al. model the
consequences of vaccine stockpiling in affluent countries on disease rates in lower- and middle-income countries and
the consequences for the eruption of new variants that could jeopardize the early success of vaccines. For countries
that can readily access vaccines, it would be better to share vaccines equitably to lower disease burdens in countries
with less access, reduce the cost of having to be constantly vigilant for case imports, and minimize virus evolution. —
CA
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